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On Exciton Decoherence in Quantum Dots
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The effects resulting due to dressing of an exciton with phonons are analyzed as the
source of unavoidable decoherence of orbital degrees of freedom in quantum dots.
The dressing with longitudinal optical phonons results in energetic shift of order of
a few meV even of the ground state of exciton in a state-of-the-art InAs/GaAs dot
and the mediating role of longitudinal acoustical phonons is essential in this process.
The characteristic time needed for dressing of the exciton with optical phonons is of
a picosecond order. That time can be regarded as the lower limit for decoherence for
optically driven quantum gates employing self-assembled quantum dot structures.
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1. INTRODUCTION

We consider an exciton, i.e. an electron-hole pair created in a quantum dot
(QD) by extremely short optical pulse (Boetal, 2001; Kikkawa and Awshalom,
1988). The rapidly created bare exciton is further dressing with phonons, which
results in arising a composite quasiparticle being the coherent mixture of the
electron-hole pair and phonons. Its energy is lower than the bare exciton energy.
In the case of interaction with only optical phonons this composite particle can
be called exciton—polaron in analogy to the Frolich electron—polaron. In a realis-
tic model much weaker deformation effects responsible for the interaction with
acoustical phonons are included.

The observation of the exciton dressing with phonons is possible when the
dipole coupling with the electromagnetic field is sufficiently strong to preserve
a nonadiabatic (i.e. rapid) exciton creation (cf. 0.2 ps laser pulse in Boai
(2001)) much faster than dressing with phonons (of ps scale as we will show below).
We consider a weakly polar medium for QDs (GaAs) in which the interaction of
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electrons with longitudinal optical (LO) phonons is dominating in terms of the
influence on the quasiparticle energy shift. Much weaker interaction with gap-less
longitudinal acoustic (LA) phonons plays an important role in kinematics of the
dressing process, being a channel of energy transfer from exciton. To determine
the limit of decoherence time of the optical excitations in QDs, this LA channel
for dressing exciton with LO/LA phonons must be included.

We describe and analyze the dressing and the relaxation of exciton prob-
lems in detail for typical self-assembled strain induced InAs/GaAs QDs (Jacak,
1998) within the Green function formulation. We model the QD by the parabolic
confinement potential.

2. PHONON DRESSING DESCRIPTION

To investigate the time evolution of the lowest exciton state, we consider the
Hamiltonian describing a single electron and a hole interacting with phonons
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Hereblls(bks) denote the phonon creation (annihilation) operatars; ¢ for LO,

s =a for LA), © denotes the frequency of the zero wave vector LO phonons,
ca—the LA phonon frequencys, n—deformation constants for the electron and
hole, M—the mass of ions in the elementary celk-the elementary cell volume,
N—the number of cells in crystad, = (1/e,, — 1/€0)~*—the effective dielectric
constant. The electron (hole) part of the Hamiltonian
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(wio <« wh). Finding the eigenfunction®,(re, ry) of the exciton Hamiltonian
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we write the Hamiltonian (1) in the second quantization representation in the form
of the sum of unperturbed and interaction parts

H = hEmala, + kz haosbfebrs
n ,S
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The linear response of the exciton to the electromagnetic field is described
by using the retarded Green function of the electric current operators

i) ~ D dalan(t) + &l ()], (6)

here d, denotes an effective dipole moment of the exciton (Elliott, 1957;
Mahan, 2000). The spectral density of the linear response function is determined
by the causal one-particle functioBgy (t) = —i (T{an(t)a;,}) (where the average

is taken with Hamiltonian (4)) which we evaluate solving the Dyson equation. We
calculate the spectral functioA(w) = —2ImGjy(w) = —2IMmGgo(w + 107) and

its time courseA(t) = (27) ! [ A(w) e '*' dw. To determine the one-particle
causal function, we evaluate the components of the mass operator using standard
method of the solution of the Green function equations of motion
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where
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with additional condition (@ks(t)) = (bks(t) + biks(t)) =0 (Engelsberg and
Schrieffer, 1963; Martin and Schwinger, 1959). Its Fourier transform takes the
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form of the Dyson equation
Gon(®) = GR(@) + Y G (@) Znyn, (@) G (@) €)

ning

Neglecting the off diagonal Green functions, one finds the diagonal elements of
the mass operator

Bnl) = D) BLCT NI

1_‘nl,n,—ks(w — Wks, _wks)[l + n(hwks)]
h(a) - wks) - En1 - 2:nlnl(w - cUks)
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(10)

Heren(x) = (/T — 1)7%, andTy ks(w1, @2) denotes the Fourier transform of a
vertex function
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satisfyingnn ks(w, w1) = 1 — h—ldznn/dw when consider terms of the lowest
order ink. Let us denote real end imaginary part of the mass operator, respectively,
ReEoo(a)) = A(a)), |mEoo(a)) = —y(a)).

We may solve the mass operator equation (10) with the assumption that the
dressed exciton is a durable composite particle which is undamped (Suna, 1964). It
corresponds to the strictly solvable one level model of (Krummheug, 2002).

We expect in this case that the exciton Green function has a real pole at frequency
corresponding to the exciton—polaron energy. In the frequency region in vicinity
of this pole, the imaginary part of the mass operator can be neglected compared
to the real part, which allows us to write the self-consistent equation {ar)
(assumingA(w) >~ —A = const)
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which may be solved exacthEf, = Eo — A, J3, (k) = Fs(n, ', k)). The energy
shift due to the interaction with LA phonons is negligible. One can calculate the
form factors
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~ ~ /[_h /[ _h
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/%(wg)z + T (0)?, m = mg + my) (Davydov, 1976).

However, we intend to describe the dressed exciton as a damped quasipar-
ticle at nonzero temperature range. When include many exciton energy levels,
the damping is a consequence of the inclusion of phonon dispersion which is
responsible for the interaction between the dressed exciton and the phonon sub-
system (Davydov and Pestryakov, 1972). We solve (10) in two iteration steps
in the vicinity of hw = Eg, taking in the first approximation the vertex func-
tions I'n,nv ks(w, w1) = 1, as done in (Moskalenket al, 1968). Starting from
A)(w) =0, y0)(w) = 07 and assuming thah(w) =~ const, we find in the first
iteration step

h
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Hereb, denotes the th level degeneracy rank{ = 1, 2). The optical phonon
contribution toy (w), is significant forhw = E, 4+ hQ only. We include the LO
phonon influence op(w), introducing an effective constant §g,(k), which does

not influence the time of fast dressing with phonons but it determines the relaxation
time atnonzerd . This constant will be estimated fromthe sumralg = 0)| = 1

for T = 0. Inthe second step, the relatiag)(w) > y(1)(w) enables one to neglect

the y1)(w) in the denominators of (10). It leads to
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where Eq = By — A', Ag(Eo/h) = § Xy gp22— = —A'. Continuing the

iteration process we would arrive to a self-consistent equatiom\fgimilar to
(12), however, after infinite number of the approximations. We find

Yo (X) = Z7lax® e P £ (x){=n(=x)8(=X) + [1 + n(x)]0(x)} (16)

here x = ho — Eg + A, f(x) = Y00, EESWLAT 7 denotes the vert
where x = how — Eg + A/, (x)_anow, enotes the vertex
function renormalization factoiZ( = |1 — h~*d A /dw|~1). We write the spectral
function in the form
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whererY(w) = Zy(w) (Langreth and Kadanoff, 1964; Mahan, 1966). Since at
zero temperature, the renormalization factor may be calculated directly

h bo 2 (K)
Z~1+ — . , 18
N zk: (Eo — En — haxo)? (18)

the sum rulg A(t = 0)] = 1 enables us to estimate the effective damping constant
a. At higher temperatures, when the phonon dispersion effects are strong we
evaluateZ using the same condition4(t = 0)| = 1).

3. RESULTS AND CONCLUSIONS

We have evaluated the interaction form factdfg (k) taking the function
of the noninteracting electron and hole system as the first approximation for the

exciton wave functiorb,(re, rn) = \lJr(,?me(re)\IJ((,g)(re), where
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Since v, « w),, we consider only the first level for the quantizationzixis
direction. A fact that an effective mass of a hole is large in comparison to the
electron effective mass, enables one to neglect the hole levels different than the

Table I. Exciton Energy Level&, and Corresponding Integral
Form Factors)§, Multiplied by nth Level Degeneracy Rartk,

le =3 nm le =6 nm
En[meV] bnJS[meV2]  En[meV]  byJg[meV?]
88.9 13.1 7.87 12.5
113.3 2x 39.0 15.7 2x 18.8
134.0 36.0 23.3 21.5
135.8 2x 16.9 23.8 2x 9.9
152.0 2x 18.4 29.6 2x 10.4
155.6 2x 5.6 30.8 2x 3.5
167.9 18.2 34.8 7.4
169.4 2x 10.7 355 2x 4.7
183.8 2x 13.0 39.5 2x 5.4

199.0 11.5 44.2 4.0
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Fig. 1. Time course of the response function and spectral intensity fer3 nm,l,/le = 1/3.

lowest one (ohy, = 0, m, = 0). Defining the functions
oo 2 . ) .
| (k) = / / YO ) ey O pydr, dg
0 0

y / $0*(2) €20 () dz =10 (k) e 262’ (20)

where the index replaces bothe, me quantum numbers, we write the form factors
in the form
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Fig. 2. Time course of the response function and spectral intensity fer6 nm,l,/le = 1/3.

We perform the calculations of the energy shift including ten lowest en-
ergy levels, for the two confinement sizks=6 nm~|;, andle =3 nm ~
In. The following material parameters suitable to the InAs/GaAs QD have been
usedmy = 0.067mg, m{ = 0.38my, g = 12.9,6,, = 10.9,hQ = 364 meV,c, =
4.8 x 10° m/s. The integral form factors of the exciton-LO phonon interaction
J5, = (h/N) X", J5,(k) multiplied by the level degeneracy rank corresponding to
the exciton energieg, are presented in Table I.

The inclusion of many exciton levels influences the dressed exciton energy
shift. It is responsible for its substantial increase (from 0.5 meV found in one
level approximation to 3.6 meV when include ten levelslfoe 3 nm, and from
0.35 meV to 2.9 meV fole = 6 nm). The other material constants= 6.7 eV,
oe = 2.7 €V, p = 5.36 g/cn? (Adachi, 1985) are useful for estimations.

The spectral density and its inverse Fourier transform calculated including
many exciton levels and including realistic asymmetry of the QB I = 1/3)
are plotted in Figs. 1 and 2. Generally, the LA channel of dressing gives for the
typical QDs thepicosecond scale of dressinigclusion of the LO channel does
not modify significantly the overall LO and LA dressing kinetics in comparison
to LA channel solely (Takagahara, 1999). Thus the LA channel of dressing gives
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the limit for adiabatic creation of exciton—polaron in InAs/GaAs QD. The slope of
the time courses of spectral functions is related to damping of the dressed exciton
at nonzero temperature. The relaxation time is strongly influenced by the size of

QD.

Let us emphasize that our results for time dependence of the response func-
tions (Figs. 1 and 2) coincide with the experimental results by Befral.
(2001).
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