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The effects resulting due to dressing of an exciton with phonons are analyzed as the
source of unavoidable decoherence of orbital degrees of freedom in quantum dots.
The dressing with longitudinal optical phonons results in energetic shift of order of
a few meV even of the ground state of exciton in a state-of-the-art InAs/GaAs dot
and the mediating role of longitudinal acoustical phonons is essential in this process.
The characteristic time needed for dressing of the exciton with optical phonons is of
a picosecond order. That time can be regarded as the lower limit for decoherence for
optically driven quantum gates employing self-assembled quantum dot structures.
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1. INTRODUCTION

We consider an exciton, i.e. an electron-hole pair created in a quantum dot
(QD) by extremely short optical pulse (Borriet al., 2001; Kikkawa and Awshalom,
1988). The rapidly created bare exciton is further dressing with phonons, which
results in arising a composite quasiparticle being the coherent mixture of the
electron-hole pair and phonons. Its energy is lower than the bare exciton energy.
In the case of interaction with only optical phonons this composite particle can
be called exciton–polaron in analogy to the Frolich electron–polaron. In a realis-
tic model much weaker deformation effects responsible for the interaction with
acoustical phonons are included.

The observation of the exciton dressing with phonons is possible when the
dipole coupling with the electromagnetic field is sufficiently strong to preserve
a nonadiabatic (i.e. rapid) exciton creation (cf. 0.2 ps laser pulse in Borriet al.
(2001)) much faster than dressing with phonons (of ps scale as we will show below).
We consider a weakly polar medium for QDs (GaAs) in which the interaction of
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electrons with longitudinal optical (LO) phonons is dominating in terms of the
influence on the quasiparticle energy shift. Much weaker interaction with gap-less
longitudinal acoustic (LA) phonons plays an important role in kinematics of the
dressing process, being a channel of energy transfer from exciton. To determine
the limit of decoherence time of the optical excitations in QDs, this LA channel
for dressing exciton with LO/LA phonons must be included.

We describe and analyze the dressing and the relaxation of exciton prob-
lems in detail for typical self-assembled strain induced InAs/GaAs QDs (Jacak,
1998) within the Green function formulation. We model the QD by the parabolic
confinement potential.

2. PHONON DRESSING DESCRIPTION

To investigate the time evolution of the lowest exciton state, we consider the
Hamiltonian describing a single electron and a hole interacting with phonons

H = He(re)+Hh(rh)− e2

ε0|re− rh| +
∑
ks

hωksb
†
ksbks − e

N1/2

(
2πhÄ

υε̃

)1/2

×
∑

k

1

k
(bko + b†−ko)(eikre − eikrh)− 1

N1/2

(
h

2Mca

)1/2

×
∑

k

k1/2(bka + b†−ka)(σe eikre − σh eikrh). (1)

Hereb†ks(bks) denote the phonon creation (annihilation) operators, (s= o for LO,
s= a for LA), Ä denotes the frequency of the zero wave vector LO phonons,
ca—the LA phonon frequency,σe,h—deformation constants for the electron and
hole,M—the mass of ions in the elementary cell,υ—the elementary cell volume,
N—the number of cells in crystal, ˜ε = (1/ε∞ − 1/ε0)−1—the effective dielectric
constant. The electron (hole) part of the Hamiltonian

Hi (ri ) = − h2

2m∗i
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i +
1
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(wherei = e, h, r 2
⊥i = x2

i + y2
i ) contains the vertical and horizontal confinement

potentials. There are characteristic confinement sizesl i =
√

h
m∗i ω

i
0
, l iz =

√
h

m∗i ωi
z

(ωi
0¿ ωi

z). Finding the eigenfunctions8n(re, rh) of the exciton Hamiltonian

Hex = He(re)+Hh(rh)− e2

ε|re− rh| , (3)
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we write the Hamiltonian (1) in the second quantization representation in the form
of the sum of unperturbed and interaction parts

H =
∑

n

hEna†nan +
∑
k,s

hωksb
†
ksbks

+ 1

N1/2

∑
n1,n2,k,s

Fs(n1, n2, k)a†n1
an2(bko + b†−ko), (4)

where

Fo(n1, n2, k) = −e

k

(
2πhÄ

υε̃

)1/2

×
∫
8∗n1

(re, rh)(eikre − eikrh)8n2(re, rh) d3re d3rh.

Fa(n1, n2, k) = −
(

hk

2Mca

)1/2

×
∫
8∗n1

(re, rh)(σe eikre − σh eikrh)8n2(re, rh) d3re d3rh. (5)

The linear response of the exciton to the electromagnetic field is described
by using the retarded Green function of the electric current operators

j (t) ∼
∑

n

dn[an(t)+ a†n(t)], (6)

here dn denotes an effective dipole moment of the exciton (Elliott, 1957;
Mahan, 2000). The spectral density of the linear response function is determined
by the causal one-particle functionsGnn′ (t) = −i 〈T{an(t)a†n′ }〉 (where the average
is taken with Hamiltonian (4)) which we evaluate solving the Dyson equation. We
calculate the spectral functionA(ω) ≡ −2ImGr

00(ω) = −2ImG00(ω + i 0+) and
its time courseA(t) = (2π )−1

∫∞
−∞ A(ω) e−iωt dω. To determine the one-particle

causal function, we evaluate the components of the mass operator using standard
method of the solution of the Green function equations of motion(

i h
d

dt
− En

)
Gnn′ (t)− 1

N1/2

∑
n1,ks

Fs(n, n1, k)Rn1n′ (ks, t) = δ(t)δnn′ , (7)

where

Rn1n′ (ks, t) = i

h
〈T{an1(t)[bks(t)+ b†−ks(t)]a

†
n′ (0)}〉, (8)

with additional condition 〈ϕ̃ks(t)〉 ≡ 〈bks(t)+ b†−ks(t)〉 = 0 (Engelsberg and
Schrieffer, 1963; Martin and Schwinger, 1959). Its Fourier transform takes the
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form of the Dyson equation

Gnn′ (ω) = G(0)
nn1

(ω)+
∑
n1n2

G(0)
nn1

(ω)6n1n2(ω)Gn2n′ (ω). (9)

Neglecting the off diagonal Green functions, one finds the diagonal elements of
the mass operator

6nn(ω) = 1

N

∑
ks

∑
n1

Fs(n, n1, k)Fs(n1, n,−k)

×
{
0n1,n,−ks(ω − ωks,−ωks)[1+ n(hωks)]

h(ω − ωks)− En1 −6n1n1(ω − ωks)

+ 0n1,n,ks(ω + ωks, ωks)n(hωks)

h(ω + ωks)− En1 −6n1n1(ω + ωks)
. (10)

Heren(x) = (ex/T − 1)−1, and0nn′,ks(ω1, ω2) denotes the Fourier transform of a
vertex function

0nn′,ks(t, t ′) ≡ − δG−1
nn′ (t)

Fs(n, n′, k)δϕ̃ks(t ′)
. (11)

satisfying0nn,ks(ω, ω1) ≈ 1− h−1d6nn/dω when consider terms of the lowest
order ink. Let us denote real end imaginary part of the mass operator, respectively,
Re600(ω) ≡ 1(ω), Im600(ω) ≡ −γ (ω).

We may solve the mass operator equation (10) with the assumption that the
dressed exciton is a durable composite particle which is undamped (Suna, 1964). It
corresponds to the strictly solvable one level model of (Krummheueret al., 2002).
We expect in this case that the exciton Green function has a real pole at frequency
corresponding to the exciton–polaron energy. In the frequency region in vicinity
of this pole, the imaginary part of the mass operator can be neglected compared
to the real part, which allows us to write the self-consistent equation for1(w)
(assuming1(ω) ' −1 = const)

−1 ' h

N

∑
k

Jo
00(k)

{
[1+ n(hωko)]

E0− Ẽn − hωko
+ n(hωko)

E0− Ẽn + hωko

}
(12)

which may be solved exactly (Ẽn = E0−1, Js
nn′ (k) = Fs(n, n′, k)). The energy

shift due to the interaction with LA phonons is negligible. One can calculate the
form factors

Jo
00(k) = πe2hÄ

18υε̃

(
L2

e− L2
h

)2
el⊥k2

⊥/2−l zk2
z/2,

Ja
00(k) = hk

2Mca
(σe− σh)2 el⊥k2

⊥/2−l zk2
z/2, (13)
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(here l = le ≈ lh, l z = l ze≈ l zh, Le =
√

h
m∗eωm

, Lh =
√

h
m∗hωm

, and ωm =√
m∗e
m

(
ωe

0

)2+ m∗h
m

(
ωh

0

)2
, m= m∗e +m∗h) (Davydov, 1976).

However, we intend to describe the dressed exciton as a damped quasipar-
ticle at nonzero temperature range. When include many exciton energy levels,
the damping is a consequence of the inclusion of phonon dispersion which is
responsible for the interaction between the dressed exciton and the phonon sub-
system (Davydov and Pestryakov, 1972). We solve (10) in two iteration steps
in the vicinity of hω = E0, taking in the first approximation the vertex func-
tions 0n1n′,ks(ω, ω1) = 1, as done in (Moskalenkoet al., 1968). Starting from
1(0)(ω) = 0, γ(0)(ω) = 0+ and assuming that1(ω) ' const, we find in the first
iteration step

1(1)(ω) ' 1(1)(E0/h) = −1′ = h

N

∑
k

bn Jo
0n(k)

E0− En − hωko
,

γ(1)(ω) = hπ

N

∑
k

Ja
00(k){[1+ n(hωka)]δ(hω − E0− hωka)

+ n(hωka)δ(hω − E0+ hωka)}. (14)

Herebn denotes then th level degeneracy rank (bn = 1, 2). The optical phonon
contribution toγ (ω), is significant forhω ∼= En ± hÄ only. We include the LO
phonon influence onγ (ω), introducing an effective constant toJa

00(k), which does
not influence the time of fast dressing with phonons but it determines the relaxation
time at nonzeroT . This constant will be estimated from the sum ruleA(t = 0)| = 1
for T = 0. In the second step, the relation1(1)(ω)À γ(1)(ω) enables one to neglect
theγ(1)(ω) in the denominators of (10). It leads to

1(2)(ω) ∼= 1(2)(E0/h) = −1′′ ' 1(2)(Ẽ′0/h)+ h−1 d1(2)

dω
|ω=Ẽ0/h1

′

= −1′Z−1, γ(2)(ω) = γ(1)(ω +1′/h), (15)

where Ẽn = En −1′,1(2)(Ẽ0/h) = h
N

∑
k

bn Jo
on(k)

Ẽ0−Ẽn−hωko
= −1′. Continuing the

iteration process we would arrive to a self-consistent equation for1 similar to
(12), however, after infinite number of the approximations. We find

γ(2)(x) = Z−1αx3 e−βx2
f (x){−n(−x)θ (−x)+ [1+ n(x)]θ (x)} (16)

where x = hω − E0+1′, f (x) =∑∞n=0
[−βx2(l 2

x/ l 2
⊥−1)]n

(2n+1)n! , Z denotes the vertex

function renormalization factor (Z = |1− h−1d1/dω|−1). We write the spectral
function in the form

A(ω) = Z
h2τ−1(ω)

[hω − E0+ Z−11′]2+ τ−2(ω)
, (17)
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whereτ−1(ω) = Zγ (ω) (Langreth and Kadanoff, 1964; Mahan, 1966). Since at
zero temperature, the renormalization factor may be calculated directly

Z ≈ 1+ h

N

∑
k

b0Jo
0n(k)

(E0− En − hωko)2
, (18)

the sum rule|A(t = 0)| = 1 enables us to estimate the effective damping constant
α. At higher temperatures, when the phonon dispersion effects are strong we
evaluateZ using the same condition (|A(t = 0)| = 1).

3. RESULTS AND CONCLUSIONS

We have evaluated the interaction form factorsJs
nn′ (k) taking the function

of the noninteracting electron and hole system as the first approximation for the
exciton wave function8n(re, rh) = 9(e)

neme
(re)9

(h)
00 (re), where

9 (i )
nm(r ) = ψ (i )

⊥nm(r⊥, ϕ)φ(i )(z) = N(i )
nm

(2π )1/2

(
r 2
⊥

l 2
i

)|m|/2
e
− r 2⊥

2l2i L |m|n

(
r 2
⊥

l 2
i

)

× eimϕ 1

π1/2l iz
e
− z2

2l2i z , N(i )
nm =

1

π1/2l i

(
n!

(n+ |m|)!
)

(19)

Sinceωi
0¿ ωi

z, we consider only the first level for the quantization inz-axis
direction. A fact that an effective mass of a hole is large in comparison to the
electron effective mass, enables one to neglect the hole levels different than the

Table I. Exciton Energy LevelsEn and Corresponding Integral
Form FactorsJo

0n Multiplied by nth Level Degeneracy Rankbn

le = 3 nm le = 6 nm

En[meV] bn Jo
0n[meV2] En[meV] bn Jo

0n[meV2]

88.9 13.1 7.87 12.5
113.3 2× 39.0 15.7 2× 18.8
134.0 36.0 23.3 21.5
135.8 2× 16.9 23.8 2× 9.9
152.0 2× 18.4 29.6 2× 10.4
155.6 2× 5.6 30.8 2× 3.5
167.9 18.2 34.8 7.4
169.4 2× 10.7 35.5 2× 4.7
183.8 2× 13.0 39.5 2× 5.4
199.0 11.5 44.2 4.0
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Fig. 1. Time course of the response function and spectral intensity forle = 3 nm,l z/ le = 1/3.

lowest one (ofnh = 0, mh = 0). Defining the functions

I (i )
n′n′′ (k) =

∫ ∞
0

∫ 2π

0
ψ

(i )∗
n′′ (r⊥,ϕ) eik⊥r⊥ cos(ϕ)ψ

(i )
n′ (r⊥, ϕ) dr⊥ dϕ

×
∫ ∞
−∞

φ(i )∗(z) eikzzφ(i )(z) dz= I (i )
⊥n′n′′ (k⊥) e−2(kzliz/2)2, (20)

where the indexn replaces bothne,me quantum numbers, we write the form factors
in the form

Jo
nn′ (k) = 2πe2hÄ

υε̃k2

[
I (e)
nn′ (k)− I (h)

nn′ (k)
]2

,

Ja
nn′ (k) = hk

2Mca

[
σeI (e)

nn′ (k)− σh I (h)
nn′ (k)

]2
. (21)



P1: FLT

International Journal of Theoretical Physics [ijtp] Pp903-ijtp-468238 August 19, 2003 5:4 Style file version May 30th, 2002

1072 Jacak, Janutka, Machnikowski, Radosz, and Krasnyj

Fig. 2. Time course of the response function and spectral intensity forle = 6 nm,l z/ le = 1/3.

We perform the calculations of the energy shift including ten lowest en-
ergy levels, for the two confinement sizesle = 6 nm ≈ lh and le = 3 nm ≈
lh. The following material parameters suitable to the InAs/GaAs QD have been
usedm∗e = 0.067m0, m∗h = 0.38mo, ε0 = 12.9,ε∞ = 10.9, hÄ = 36.4 meV,ca =
4.8× 103 m/s. The integral form factors of the exciton-LO phonon interaction
Jo

0n = (h/N)
∑

k Jo
0n(k) multiplied by the level degeneracy rank corresponding to

the exciton energiesEn are presented in Table I.
The inclusion of many exciton levels influences the dressed exciton energy

shift. It is responsible for its substantial increase (from 0.5 meV found in one
level approximation to 3.6 meV when include ten levels forle = 3 nm, and from
0.35 meV to 2.9 meV forle = 6 nm). The other material constantsσe = 6.7 eV,
σe = 2.7 eV,ρ = 5.36 g/cm3 (Adachi, 1985) are useful for estimations.

The spectral density and its inverse Fourier transform calculated including
many exciton levels and including realistic asymmetry of the QD (l ze/ le = 1/3)
are plotted in Figs. 1 and 2. Generally, the LA channel of dressing gives for the
typical QDs thepicosecond scale of dressing. Inclusion of the LO channel does
not modify significantly the overall LO and LA dressing kinetics in comparison
to LA channel solely (Takagahara, 1999). Thus the LA channel of dressing gives
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the limit for adiabatic creation of exciton–polaron in InAs/GaAs QD. The slope of
the time courses of spectral functions is related to damping of the dressed exciton
at nonzero temperature. The relaxation time is strongly influenced by the size of
QD.

Let us emphasize that our results for time dependence of the response func-
tions (Figs. 1 and 2) coincide with the experimental results by Borriet al.
(2001).
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